From 2D Lithography to 3D Patterning

نویسندگان

  • H. W. van Zeijl
  • P. M. Sarro
چکیده

Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the performance of a waferstepper (ASML PAS5000) in several 3D processes ranging form waferbonding and thinning to dual side processing with through silicon vias (TSV). Four different generic expose/etch strategies are discussed to fabricate vertical micro sieves, vertical through wafer silicon plate springs, dual side interconnect with TSV and vertical electrodes in deep silicon channels. It is concluded, that despite the 2D nature of advanced waferstepper lithography a wide range of 3D structures can be fabricated. The multi point alignment capabilities of a waferstepper can improve the overlay in several 3D manufacturing processes and the high accuracy alignment system can be used as a metrology tool for further development of 3D integration processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

Trends in imprint lithography for biological applications.

Imprint lithography is emerging as an alternative nano-patterning technology to traditional photolithography that permits the fabrication of 2D and 3D structures with <100 nm resolution, patterning and modification of functional materials other than photoresist and is low cost, with operational ease for use in developing bio-devices. Techniques for imprint lithography, categorized as either 'mo...

متن کامل

Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration i...

متن کامل

Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels†

The biomaterials community is faced with the challenge of imitating a vastly complex, physiological tissue environment. While cellular systems towards this end have been traditionally studied in two dimensions (2D), most cells require three-dimensional (3D) cues to produce a physiologically relevant response. Two-photon absorption laser scanning lithography (TPA-LSL) may be applied to photosens...

متن کامل

Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments

Spatial patterning of proteins is a valuable technique for many biological applications and is the prevailing tool for defining microenvironments for cells in culture, a required procedure in developmental biology and tissue engineering research. However, it is still challenging to achieve protein patterns that closely mimic native microenvironments, such as gradient protein distributions with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010